A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments.

نویسندگان

  • Bertrand Collignon
  • Axel Séguret
  • José Halloy
چکیده

Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group coordination in a biologically-inspired vectorial network model

Most of the mathematical models of collective behavior describe uncertainty in individual decision making through additive uniform noise. However, recent data driven studies on animal locomotion indicate that a number of animal species may be better represented by more complex forms of noise. For example, the popular zebrafish model organism has been found to exhibit a burst-and-coast swimming ...

متن کامل

Bio-inspired Practicalities: Collective Behaviour using Passive Neighbourhood Sensing

Implementing collective behaviour in cooperative multi-agent systems requires several practical constraints to be addressed. In some environments, communication bandwidth is a critical constraint which may compromise the intended cooperative behaviour. This paper introduces a bio-inspired model which invokes collective behaviour in a multi-agent system using passive sensing without any explicit...

متن کامل

Strains differences in the collective behaviour of zebrafish (Danio rerio) in heterogeneous environment

Recent studies show differences in individual motion and shoaling tendency between strains of the same species. Here, we analyse collective motion and response to visual stimuli in two morphologically different strains (TL and AB) of zebrafish. For both strains, we observed 10 groups of 5 and 10 zebrafish swimming freely in a large experimental tank with two identical attractive spots (cylinder...

متن کامل

Strain differences in the collective behaviour of zebrafish (Danio rerio) in heterogeneous environment

Recent studies show differences in individual motion and shoaling tendency between strains of the same species. Here, we analyse collective motion and response to visual stimuli in two morphologically different strains (TL and AB) of zebrafish. For both strains, we observed 10 groups of 5 and 10 zebrafish swimming freely in a large experimental tank with two identical landmarks (cylinders or di...

متن کامل

Robust inter and intra-cell layouts design model dealing with stochastic dynamic problems

In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Royal Society open science

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2016